HANSE Electronics corp.	HC-850T1608E	Spec. No.	HP-L217
	850nm INFRARED LED	Part	LED

2017Rev: 1.0

SPECIFICATION

CUSTOMER

MODEL NO.

DEVICE NAME:

ISSUE

<u>IS</u>	SUED DATE	:		
[CUSTOMER APPROV	/AL]			
APPROVAL NO.				
APPROVAL DATE				
	INSPECTER	CHECK	APPROVAL	COMMENT
APPROVAL				
[SUPPLIER]				•

REVIEW

REVIEW

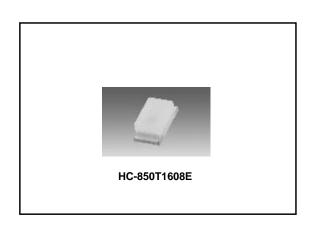
APPR'D

ISSUED DEPT.

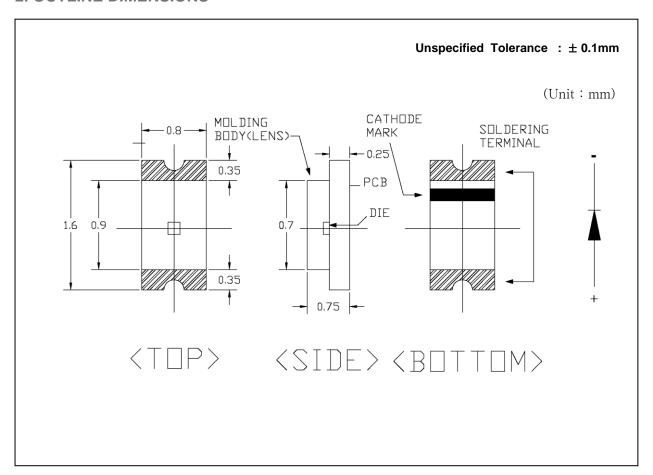
# HANSE	HC-850T1608E	Spec. No.	HP-L217
Electronics corp.	850nm INFRARED LED	Part	LED

2017Rev: 1.0

- CONTENTS -


1. FEATURES
2. OUTLINE DIMENSIONS
3. SPECIFICATIONS
4. COMPOSITION OF DEVICE
5. ELECTRO-OPTICAL CHARACTERISTICS CURVES
6. RELIABILITY
7. TAPING
8. PACKING
9. CUATIONS

# HANSE	HC-850T1608E	Spec. No.	HP-L217
Electronics corp.	850nm INFRARED LED	Part	LED


2017Rev: 1.0

1. FEATURES

- SMD Top View type
- 850nm Infrared Emitting
- High Radiant Intensity
- Viewing angle : Lambertian emitter(120°)
- Package size : 1.6 imes 0.8 imes 0.8
- Reliability test completion
- Suitable for all SMT

2. OUTLINE DIMENSIONS

# HANSE	HC-850T1608E	Spec. No.	HP-L217
Electronics corp.	850nm INFRARED LED	Part	LED

2017Rev: 1.0

3. SPECIFICATIONS

Absolute Maximum Rating

(Ta<u>=25℃)</u>

Parameter	Symbol	Value	Unit
Power Dissipation	P_D	100	mW
Peak Forward Current 1	I _{FP}	0.5	А
Reverse Voltage	V _R	5	V
Forward Current	I _F	50	mA
Operating Temperature	Topr	-35 to + 85	$^{\circ}$
Storage Temperature	Tstg	-40 to + 85	$^{\circ}$
Soldering temperature	Tsol	Reflow soldering : 240 ℃, 10 sec Hand Soldering : 300 ℃, 3 sec	

^{▶ 1 :} Duty Ratio \leq 1/100, Pulse Width \leq 0.01 msec.

■ Electro-Optical Characteristics

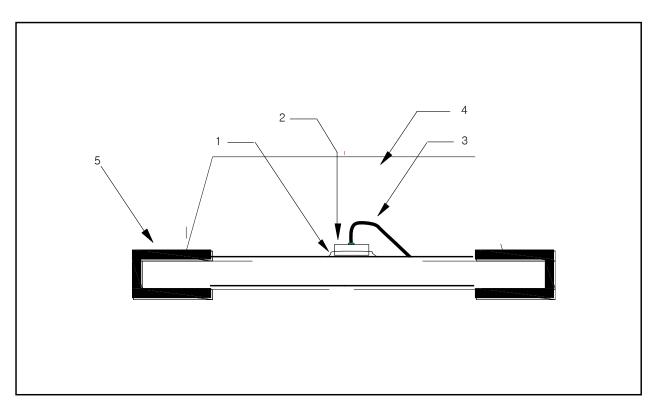
(Ta=25℃)

						(1a=20 €)
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage	V _F	I _F =50 mA	1.3	1.4	1.7	V
Reverse Current	I _R	V _R =5V	-	-	10	μΑ
Radiant Intensity	Po	I _F =50 mA	1.8	3	5	mW/sr
Viewing Angle ► 3	20 _{1/2}	I _F =50 mA	-	±60	-	deg.
Peak Wavelength	λ_{P}	I _F =50 mA	-	850	-	nm

^{▶ 3 :} $\Theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the peak intensity.

Measurement Uncertainty: ± 10%

# HANSE	HC-850T1608E	Spec. No.	HP-L217
Electronics corp.	850nm INFRARED LED	Part	LED


2017Rev: 1.0

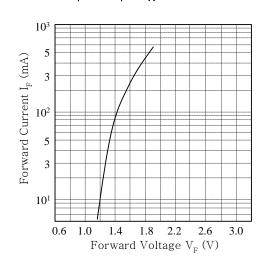
4. COMPOSITION OF DEVICE

A. MATERIALS OF PACKAGE

Number	Item	Material
1	Die adhesive	Ag Epoxy
2	LED Chip	AlGaAs
3	Au Wire	1.0mil
4	Mold epoxy	Epoxy Resin
5	Electrodes	Au Plating Cu Alloy

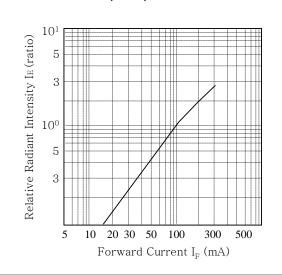
B. DIAGRAM OF COMPOSITION

Hc	HANSE	
113	Electronics corp.	

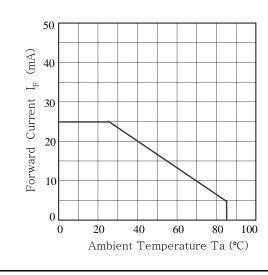

HC-850T1608E	Spec. No.	HP-L217
850nm INFRARED LED	Part	LED

2017Rev : 1.0

5. ELECTRO-OPTICAL CHARACTERISTICS CURVES


■ Forward Voltage Vs. Forward Current

Function : $I_F = \cancel{x}(V_F)$; $T_A = 25 \degree$ C

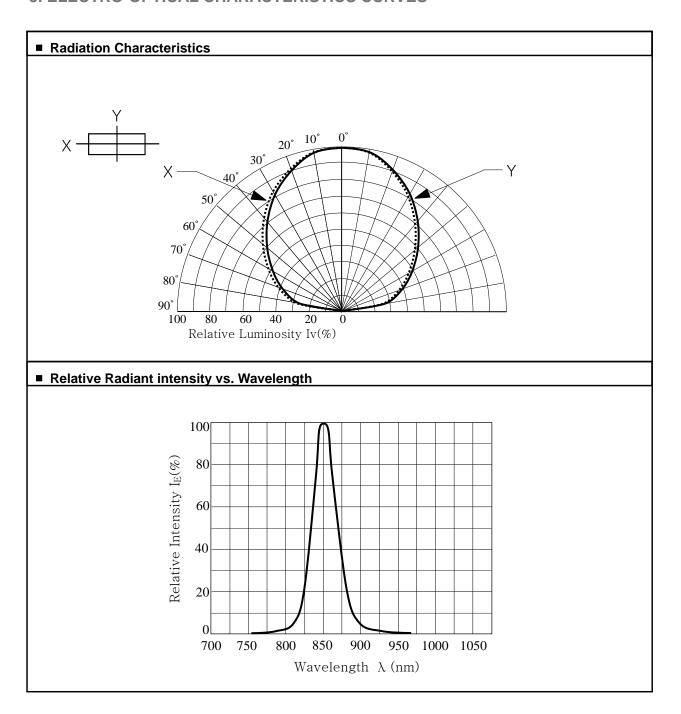

■ Forward Current Vs. Relative Luminosity

Function : $I_E/I_{E (100\text{mA})} = \cancel{x}(I_F)$; $I_A = 25 \degree$ C

■ Forward Current Derating Curve

Function: $I_F = x(T_H)$; $I_F = I_F \max$

■ Relative Luminosity Vs. Ambient Ta(°C)



# HANSE	HC-850T1608E	Spec. No.	HP-L217
Electronics corp.	850nm INFRARED LED	Part	LED

2017Rev: 1.0

5. ELECTRO-OPTICAL CHARACTERISTICS CURVES

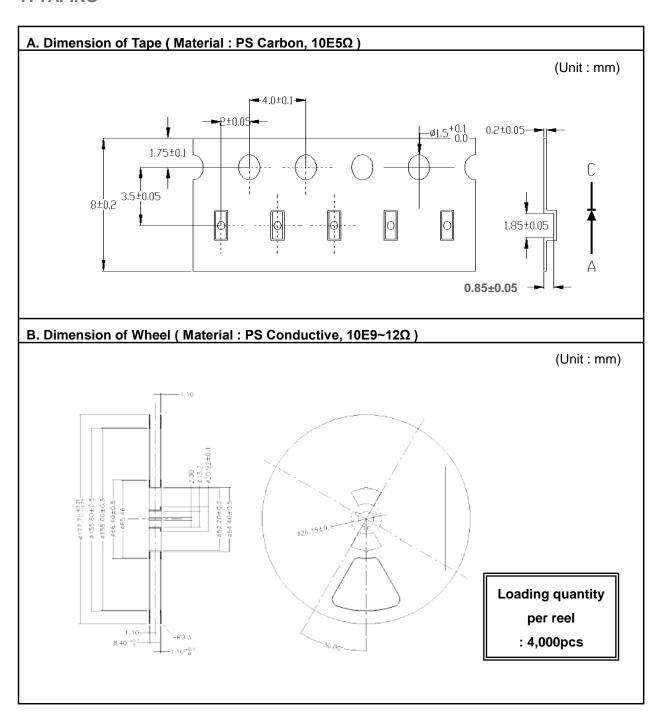
HANSE Electronics corp.	HC-850T1608E	Spec. No.	HP-L217
	850nm INFRARED LED	Part	LED

2017Rev: 1.0

6. RELIABILITY

A. TEST ITEMS AND RESULTS

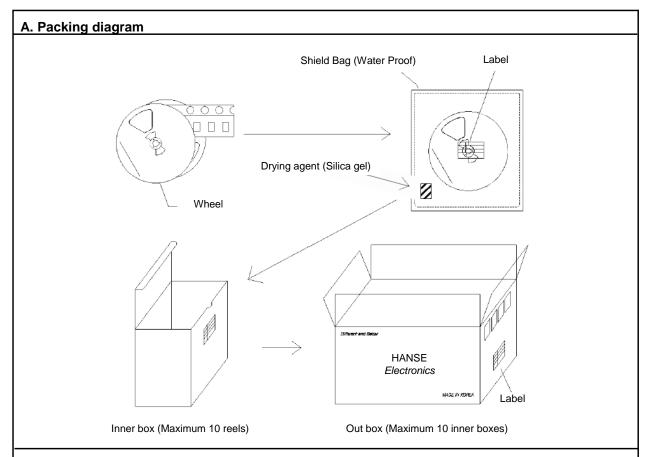
Test Item	Standard test method	Test Conditions	Note	Number of Damaged
Resistance to Soldering Heat (Reflow Soldering)	JEITA ED-4701 300 301	Tsol=240 ℃, 10sec. (Pre treatment 30 ℃, 70%, 168hrs.)	2 times	0/50
Solderability (Reflow Soldering)	JEITA ED-4701 100 105	Tsol=215±5℃, 3sec.	1 time over 95%	0/50
Heat Shock	JEITA ED-4701 100 105	0℃ ~ 100℃ 5sec. 15sec.	20 cycles	0/50
Temperature Cycle	JEITA ED-4701 100 105	-40℃ ~ 25℃ ~ 100℃ ~ 25℃ 15min. 5min. 15min. 5min.	100 cycles	0/50
High Humidity Heat Cycle	JEITA ED-4701 200 203	30℃ ~ 65℃ ~ -10℃ 90%RH 24hrs./1cycle	10 cycles	0/50
High Temperature Storage	JEITA ED-4701 200 203	Ta=100℃	1000 hrs.	0/50
Humidity Heat Load	JEITA ED-4701 100 103	Ta=60℃, RH=90%	1000 hrs.	0/50
Low Temperature Storage	JEITA ED-4701 200 202	Ta=-40℃	1000 hrs.	0/50
Life Test Condition 1		Ta=25℃, IF=20mA	1000 hrs.	0/50
High Temperature Life Test		Ta=85℃, IF=5mA	1000 hrs.	0/50
High Humidity Heat Life Test		60℃, RH=90%, IF=15mA	500 hrs.	0/50
Low Temperature Life Test		Ta=-30℃, IF=20mA	1000 hrs.	0/50


B. CRITERIA FOR JUDGING THE DAMAGE

Item	Symbol	Test Conditions	Criteria for Judgement		
Item	Syllibol	Test Collditions	Min.	Max.	
Forward Voltage	VF	IF=50mA	-	U.S.L.*) × 1.1	
Reverse Current	IR	VR=5V	_	$U.S.L.*) \times 2.0$	
Luminous Intensity	IV	IF=50mA	$L.S.L.**) \times 0.7$	_	

HANSE Electronics corp.	HC-850T1608E	Spec. No.	HP-L217
	850nm INFRARED LED	Part	LED

2017Rev: 1.0


7. TAPING

HANSE Electronics corp.	HC-850T1608E	Spec. No.	HP-L217
	850nm INFRARED LED	Part	LED

2017Rev: 1.0

8. PACKING

B. Precaution

- A. The label on the minimum packing unit shows: Part Number, Lot Number, Ranking, Quantity In order to protect the LEDs from mechanical shock, we pack them in cardboard boxes for transportation.
- B. The LEDs may be damaged if the boxes are dropped or receive a strong impact against them, so precautions must be taken to prevent any damage.
- C. The boxes are not water resistant and therefore must be kept away from water and moisture. When the LEDs are transported, we recommend that you use the same packing method as HANSE Electronics

HANSE Electronics corp.	HC-850T1608E	Spec. No.	HP-L217
	850nm INFRARED LED	Part	LED

2017Rev: 1.0

9. CUATIONS

(1) Moisture Proof Package

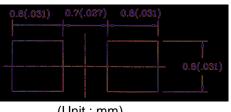
- When moisture is absorbed into the LEDs it may vaporize and expand during soldering.
 There is a possibility that this can cause the exfoliation of the contacts and the damage the optical characteristics of the LEDs. For this reason, the moisture proof package is used to keep moisture to a minimum in the package.
- After opening the package, the LEDs should be kept at 30 °C, 40~70%RH.
 The LEDs should be soldered within 168 hours(7days) after opening the package.
- When storing the LEDs after opening the package, use a sealable away from package with a moisture absorbent material(Silica gel) inside.
- If the blue color of the desiccant indicator has faded after storing, a baking treatment should be performed as follows: 65 ± 5 ℃ for more than 24 hours.

(2) Soldering Conditions

- The LEDs can be soldered in place using the reflow soldering method.
- The recommended soldering conditions are as follows:


Reflow Soldering Hand Soldering Lead-free Solder Lead Solder Pre-heat 120~150℃ 180~200℃ Temperature 350°C Max Pre-heat time Soldering time 120sec Max 120sec Max 3sec Max Peak temperature 240°C Max 260°C Max (one time only) Soldering time 10sec Max 10sec Max Condition refer to refer to Temperature Temperature profile 1 profile 2

 $[\]star$ After reflow soldering rapid cooling should be avoided.


HANSE Electronics corp.	HC-850T1608E	Spec. No.	HP-L217
	850nm INFRARED LED	Part	LED

2017Rev: 1.0

Temperature-Profile

Recommended Soldering

(Unit: mm)

- Modifications should not be done after the LEDs have been soldered. If modifications cannot be avoided, a double-head soldering iron should be used after checking whether the characteristics of the LEDs will not be damaged by modification after soldering.
- Reflow soldering, do not apply force to the package during heating.
- After soldering, do not warp the circuit board.

(3) Heat Generation

Heat generation must be taken into design consideration when using the LEDs. The coefficient of temperature increase per input electric power is about 0.62 ℃/mW at the LED's active layer. This coefficient will be affected by the heat resistance of the circuit board and by dense mounting of the LEDs. At the same time, precautions must be taken into the design of circuitry to avoid intense heat generation. Proper designs which allow radiation of heat, etc. may be needed.

HANSE Electronics corp.	HC-850T1608E	Spec. No.	HP-L217
	850nm INFRARED LED	Part	LED

2017Rev: 1.0

(4) Static Electricity

- Static Electricity and surge damages the LEDs. It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs.
- All devices, equipment and machinery must be properly grounded.
- When inspecting own final products on which LEDs were mounted, it is recommended to check also whether the mounted LEDs are damaged by static electricity or not.
- Damaged LEDs will show some unusual characteristics such as leak current remarkably increases, starting forward voltage becomes lower, or the LEDs get unlighted at the low current.

(5) Cleaning

 Use Isopropyl Alcohol as a solvent for cleaning the LEDs. Using other solvents may dissolve the LED package and the epoxy. Caution is needed.
 Ultrasonic cleaning of the LEDs should not be done.

(6) Others

- The electrode sections are plated with silver. Those will become discolored by contact with corroded gas etc. Precautions must be taken to maintain a clean storing atmosphere.
- These LEDs described in this brochure are intended to be used for ordinary electronic
 equipment. Consult HANSE's sales staff in advance for information on the
 applications in which exceptional quality and reliability are required, particularly when
 the failure or malfunction of the LEDs may directly jeopardize life or health (such as
 airplanes, aerospace, automobiles, life support systems and safety devices).
- User shall not reverse engineer by disassembling or analysis of the LEDs without having the prior written consent of HANSE. When defective LEDs are found, User shall inform to HANSE directly before disassembling or analysis.
- The appearance and specifications of the product may be modified for improvement without notice.